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Thermally activated breakdown in the fiber-bundle model

Stéphane Roux
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Guarinoet al., ~cond-Mat/9908329! have recently introduced a fiber bundle model where fiber fracture can
be thermally activated. Under a fixed~subcritical! loading, the mean failure time of the bundle^t f& is studied.
An analytical expression for the latter is obtained as a function of the load. The effect of a~narrow! quenched
disorder in the fracture stress of the fibers with a Gaussian distribution is shown to lead to an effective
temperature simply translated with respect to the actual one. Finally, some ‘‘critical’’ properties of fracture
precursors which have been proposed are investigated within the present model.

PACS number~s!: 46.50.1a, 62.20.Mk, 81.40.Np
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I. INTRODUCTION

Damage mechanics describes the mechanical behavi
heterogeneous solids in which microcracks can nucle
propagate and be arrested. Paradoxically, even though
erogeneity is essential for providing the basis of micro-cra
nucleation and arrest, the constitutive law is generally c
sidered as describing a homogeneous solid. This motiv
studies of the effect of disorder on the mechanical beha
of quasibrittle materials. However, even minimal models
two or three dimensions represent a formidable challeng
solve analytically. Thus a lot of work has been based
numerical simulations. In this case, the strength of the c
clusion which can be reached is severely limited by sys
size constraints and statistics.@1,2#

Alternatively, a lot of effort has been spent on analytic
approaches which may provide a more solid ground. T
class of models which can be addressed analytically
involve severe simplifications. One of these models, the
ber bundle’’ model, received a lot of attention because o
can solve analytically a number of its properties. This me
field model has been introduced by Daniels@3# as early as in
the 1940’s. In the original version of this model, paral
fibers connected to two rigid bars are loaded in tension.
unbroken fibers are supposed to be subjected to an equal
~this is where the mean-field hypothesis comes into pla!.
The behavior of each fiber is supposed to be ideally ela
~with the same stiffness for all fibers! and brittle ~with a
random distribution of failure strength!. Randomness or dis
order enters only in the definition of the breaking thresho
and is time independent. After this step, the time evolution
the bundle is deterministic. Many exact properties of t
model have been obtained, from the mean for
displacement characteristics@3# to fine details on the statis
tics of avalanches.@4# A large variety of extensions hav
been considered, such as load sharing rules,@5–7# coupling
to an elastic block,@8# plastic behavior@9# etc.

Among them an important class of extension has b
focused on the statistics of time to failure, which conce
materials where subcritical crack growth may take place
this case, under a given~subcritical! loading one fiber may
stand a given load for some time, until it breaks down. T
question at the heart of these studies is to understand
PRE 621063-651X/2000/62~5!/6164~6!/$15.00
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statistics of the time to failure for the entire bundle. Colem
@10,11# pioneered such extensions, and obtained key res
for the Gaussian character of the failure time distribution
short fibers~and the breakdown of such a character for lo
fibers!. Later, some of these results have been extended
broad class of time-dependent strength by Phoenix.@12,13#

Motivated by an initial theoretical work by Pomeau,@14#
and by preceding experimental results@15,16# on the time to
failure under a constant load, Guarinoet al. @17# have intro-
duced a variant of the latter class of extensions, taking i
account a thermally activated fracture initiation. We stre
the point that there are many different ways of introduci
such thermally activated rupture. In particular, Phoenix a
Tierney @18# derived a breakdown rule based on the int
atomic potential between atoms as fitted by a Morse po
tial. The approach of Guarino is based on a different sp
namely thermal fluctuation are assumed to induce an a
tional white Gaussian noise in the load carried by the fibe
Based on a numerical study of this model, they obtain
results which were argued to support Pomeau’s initial s
gestion concerning the scaling of the time to failure, suita
adapted to this mean-field model. Moreover, a number
experimental results@15,16,20,21# seem also to conform to
the scaling laws obtained within the model.

It is thus important to secure these results through an a
lytic investigation of the properties of this fiber bund
model. It is the purpose of the present article where we c
sider strictly the model introduced in Ref.@17#. Our analyti-
cal results support partly the results inferred from the n
merical study. In particular the temperature dependence
the time to failure is justified~up to unimportant logarithmic
correction! as well as the power-law distribution of energ
dissipated in breaking events. However, some of the exp
sions proposed in Ref.@17# are unfounded, and an analytic
solution is presented here.

Thus one of the principal motivations of the introductio
of this model, i.e., a direct justification of Pomeau’s conje
ture, @14# has to be reconsidered carefully. We will not
this paper discuss the foundations of the model, but ra
stick to its original definition. The results concern the me
value ~and statistical distribution! of the failure time of a
homogeneous bundle under a fixed load. We also cons
the case of a heterogeneous fiber bundle and show tha
6164 ©2000 The American Physical Society
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PRE 62 6165THERMALLY ACTIVATED BREAKDOWN IN THE FIBER- . . .
deed the quenched disorder has~to first order! the effect of
modifying the effective temperature, as suggested
Guarinoet al. @17# Finally, we consider also the statistics
the energy released in the fiber failure as precursors to gl
failure.

II. HOMOGENEOUS SYSTEM

Let us consider first the case without any disorder in
fiber strength. The threshold force isf c51. The total load on
the bundle isF, and there are initiallyN fibers. The force on
each fiber is

f 5 f 01h, ~1!

wheref 05F/N andh is a random~uncorrelated! noise with
a Gaussian distribution

p~h!5
1

A2pkT
expS 2

h2

2kTD ~2!

of zero mean and variancekT, following precisely the mode
and notations introduced in Ref.@17#. The cumulative distri-
bution of h is calledP(h)5*h

`p(x)dx.
The probability that one fiber survives after timet is

p1~ t !5@12P~12 f 0!# t. ~3!

The probability that the entire bundle survives after timet is

pN~ t !5@12P~12 f 0!#Nt. ~4!

Thus the distribution of the first failure time is an expone
tial distribution. The average failure time is

^t1&5
21

N ln@12P~12 f 0!#
. ~5!

Once the first fiber is broken, one faces a similar probl
with a smaller fiber bundle, and a larger load per fiber. Th
after i 21 broken fibers, the next failure is again an expon
tial distribution of average timêt i&

^t i&5
21

~N2 i !ln$12P@12N f0 /~N2 i !#%
. ~6!

Therefore the total failure time for the bundle is

^t f&5(
i 51

N
21

~N2 i !ln$12P@12N f0 /~N2 i !#%
. ~7!

For largeN, we can turn this sum into a continuous integ

^t f&5N21E
0

N 2N

~N2x!ln$12P@12N f0 /~N2x!#%
dx

5E
f 0

` 21

ln@12P~12y!#

dy

y
. ~8!

It is important to note that the size of the fiber bundleN
disappears in this expression. The above integral is an e
result which involves no approximation. In fact the abo
analysis Eqs.~3!–~8! is only a specific example of a gener
y
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result obtained first by Coleman.@10# The quantity P(1
2y) was termed ‘‘breakdown rule’’ in this reference, and
number of properties have been illustrated in specific
amples, such as exponential or a power-law function@19,18#
for this breakdown rule. In the following, we will illustrate
our discussion with simple numerical simulations which e
sentially consist in integrating the above equation num
cally, using for the ‘‘breakdown rule’’ the specific ‘‘erro
function’’ which results from the definition of the model i
Ref. @17#.

It is impossible to arrive at a closed-form expression
the failure time for a Gaussian distribution of force fluctu
tions. However, we may use the fact that the sum is do
nated by the time required for breaking the first fibers wh
~i! f 0 is much less than the maximum loadf c51 a fiber can
sustain and~ii ! the force fluctuations have a small amplitud
kT!1. ThenP can be considered as much smaller than 1
the above expression. To reach an analytical expression
the failure time, we thus expand the derivative oft f with
respect tof 0 for small P, and integrate this expansion. Th
derivative of this time with respect tof 0 gives

]^t f&
] f 0

5
1

f 0 ln@12P~12 f 0!#
'

1

f 0P~12 f 0!
. ~9!

For (12 f 0)2@kT, we may expand the error function to ob
tain

P~12 f 0!5

AkT expS 2
~12 f 0!2

2kT D
A2p~12 f 0!

@11O~kT!#. ~10!

Taking into account only the dominant terms in powers
kT, we obtain

^t f&'
A2pkT

f 0
expS ~12 f 0!2

2kT D . ~11!

For kT!(12 f 0)2, the above approximation gives an exce
lent approximation as shown below.

Guarino et al. @17# have considered the above proble
through numerical simulations. Different properties of t
model were investigated in order to draw a comparison w
either experimental results published in Refs.@15,16,20# or
theoretical suggestions by Pomeau.@14# Concerning the fail-
ure time under a constant load, Guarinoet al. reported the
following two key observations:~1! ln^t f&} f 0

22 @Fig. 2~a! of
Ref. @17## and ~2! ln^t f&}1/(kT) @Fig. 2~b! of Ref. @17##.

None of these two results is actually exact. The first res
seems to be a fortuitous coincidence. Indeed, using the
rameter range used in Ref.@17#, the data in a ln̂t f& vs 1/f 0

2

graph shows only a limited curvature. Figure 1 propose
graph similar to Fig. 2~a! of Ref. @17#, and we indeed ob-
serve that the data can be reasonnably considered as str
over this range of variation, in agreement with the numeri
study of the latter reference. However, as the range of for
is extended, the apparent linearity breaks down. We note
the figure that the approximation given in Eq.~11! shown as
thin lines gives an excellent agreement with the direct co
putation of the integral Eq.~8!.
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6166 PRE 62STÉPHANE ROUX
The second result proposed by Guarinoet al., @17#
ln(t f)}1/(kT) differs from our result Eq.~11! only through
a weak logarithmic correction. Figure 2 indeed shows t
the data conforms to such a variation for low temperatu
and intermediate forces. Again we note that the integral
~8! is well approximated by Eq.~11!.

III. SCALING ARGUMENT

As the above argument does not provide much phys
insight in the expression of the failure time, we presen
simpler argument which reproduces the leading expres
of t f . Let us consider the failure timêt1& for the first fiber.
Using the above hypothesis of a low temperature or sm
fluctuating part for the force (12 f 0)2@kT, we can write

^t1&'
1

NP~12 f 0!
'

A2p~12 f 0!

NAkT
expS ~12 f 0!2

2kT D .

~12!

This time is decreasing as the number of the broken fi
increases. The total failure of the bundle is reached afte
time which can be roughly estimated as^t1& times the num-
ber of fibers necessary to reduce significantly the break
time. The initiation stage can be estimated by noting that

FIG. 1. Mean failure time~log scale! plotted as a function of
1/f 2. The three curves correspond tokT50.009, 0.012, and 0.015
from top to bottom. The thin curves show the approximate exp
sion obtained in Eq.~11!.

FIG. 2. Mean failure time~log scale! plotted as a function of
1/kT. The forcef in the four curves correspond to 0.63, 0.60, 0.5
and 0.53 as indicated in the caption. The continuous thin cu
show the approximate formula Eq.~11! and the symbols correspon
to the numerical integration of Eq.~8!.
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most rapidly varying term is provided by the exponenti
and thus the argument of the exponential drops for a cha
in force supported by the fibers of order

D f }
kT

~12 f 0!
. ~13!

This change occurs aftern* fiber have failed where
f 0(n* /N)5D f , hence

n* }
NkT

~12 f 0! f 0
~14!

Therefore, the failure timet f is finally estimated asn* t1, or

t f}AkT

f 0
expS ~12 f 0!2

2kT D ~15!

in agreement with the approximate expression Eq.~11!.

IV. FAILURE TIME DISTRIBUTION

We have studied the mean value of the failure time d
tribution. Let us now consider the statistical distribution
these failure times. We have seen thatt f was the sum of
exponentially distributed timest i each independent, but with
a different characteristic time~and thus average, standa
deviations, etc. are all affected by this scaling!. At fixed
force f 0 and temperature, as the system size goes to infin
the central limit theorem holds, and thus the global failu
time is Gaussian distributed. The variance of the distribut
is also simply additive, and thus its value,s2, for the global
failure time is

s25^~t f2^t f&!2&

5N22E
0

N 2N2

~N2x!2 ln@12P@12N f0 /~N2x!#%2
dx

5
1

N f0
E

f 0

` 1

ln@12P~12z!#2
dz. ~16!

We again resort to the low temperature hypothesis, and a
a similar computation as for the previous section. We obt

s2'n* t1
2'

2p~12 f 0!

N f0
expS ~12 f 0!2

kT D . ~17!

Thus as the size of the fiber bundle increases, the width
the distribution of failure times is expected to become m
narrow, scaling as 1/AN. The relative width of this distribu-
tion, normalized by the mean failure times2/t f

2}1/n* , also
scales as 1/kT, giving a broader distribution for low tempera
tures. Let us note that this result has been obtained by C
man@10,11# and generalized by Phoenix@12,13# under much
more general assumptions.

V. DISORDERED CASE

Now we consider a statistical distribution of breakin
force thresholdf c

( j ) for each fiberj, supposed to distributed a
a Gaussian of average 1, and variancekQ, where following

s-

,
s
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PRE 62 6167THERMALLY ACTIVATED BREAKDOWN IN THE FIBER- . . .
Guarinoet al. @17# we introduce an equivalent temperatu
Q to measure this time-independent breaking force varian
The probability that fiberj survives after timet is

s~ t !5@12P~ f c
( j )2 f 0!# t. ~18!

The probability that the entire bundle does not experie
any failure after timet is

s~ t !5)
j 51

N

@12P~ f c
( j )2 f 0!# t. ~19!

For a large number of fibersN we may expand

s~ t !5exp~2t/t1! ~20!

with

1/t152NE
2`

`

ln@12P~11x2 f 0!#g~x!dx, ~21!

whereg is the Gaussian distribution of zero mean and va
ancekQ. The interesting regime is when both temperatureT
andQ are low, i.e.,kT!(12 f 0)2 andkQ!(12 f 0)2. Then
one may expand the~small! probability P, and obtain

1/t15NA T

2pAQ
expS 2

~12 f 0!2

2kT
D E

2`

` 1

~11x2 f 0!

3@12O~kT!#expS 2
~T1Q!x2

2kTQ
D expS 2

x~12 f 0!

kT
D dx

~22!

Simple algebra retaining only the leading term~low tempera-
tures! in the expansion gives for (12 f 0)2@kQ(T1Q)/T

t15
A2p

N

~12 f 0!

Ak~T1Q!
expS ~12 f 0!2

2k~T1Q! D . ~23!

The remarkable property of this expression is that it can
compared to the previous result obtained for a homogene
system, Eq.~12!, with, however, a different temperatureTeff
such that

Teff5T1Q. ~24!

This conclusion is similar to the one proposed by Guarinoet
al. @17# on the basis of their numerical simulations, name
that the ‘‘quenched’’~time-independent! heterogeneities o
the medium modifies the effective temperature. Moreove
appears as being simply additive~for low temperatures!. It is
important to note that fitting the experimental fracture d
for various systems@20,16# revealed a good agreement wi
a theoretical expectation expression for thermally activa
failure only if a temperature much larger than the actual o
of the experiment was used. One possibility is that inde
quenched disorder comes into play through an effective t
perature such as the one obtained above. However,
should also consider the possibility that the actual form
e.

e

-

e
us

,

it

a

d
e
d
-

ne
f

the fitting expression is not quite relevant for the experime
A systematic study system by system should be performe
resolve those possibilities.

The above computation concerns the first fiber failu
However, we are interested in the failure of the entire fib
bundle, which requires the breaking of a large number
fibers, previously estimated to be of ordern* @Eq. ~14!#. It is
tempting to extrapolate the previous scaling argument. Ho
ever, as more and more fibers fails, the tail of the distribut
of force threshold is ‘‘consumed’’ in the process, and th
the ‘‘temperature’’ Q associated with the distribution o
breaking threshold should decrease.

However, in the low-temperature regimekT!1, we have
seen that the failure time was dictated by the rupture o
small proportion of fibersn* /N proportional tokT. In the
presence of disorder, this proportion may be slightly e
hanced~with an upper bound obtained withTeff instead ofT
in the expression ofn* ). Nevertheless asn* /N goes to zero,
the above estimate is expected to give a proper accoun
the role of an additional quenched noise.

VI. FRACTURE PRECURSORS

Another extremely interesting point was raised in the n
merical study of Guarinoet al., @17# namely, the scaling of
precursors to fracture. This point is of fundamental and pr
tical interest. It has been addressed in the past for the fi
bundle case~without any thermal noise! through the study of
avalanche statistics. This problem has been analytically
solved by Hemmer and Hansen.@4# Let us here recall briefly
the results obtained by Guarinoet al.

In an elementary fiber failure, the elastic energy stored
the nth fiber which breaks is

e5~1/2!
F2

~N2n!2 5~1/2!
f 0

2

~12n/N!2 ~25!

since the stiffness of each fiber is unity. In Ref.@17# the
distinction is made between individual fiber failure an
events when several fibers break simultaneously. The no
of simultaneity is related to the short range correlation in
thermal noise, and thus we will ignore this and only discu
events as if they consisted in a single fiber. In fact events
consist of many fibers only in the very end of the proce
@when f 0 /(12n/N) is of orderf c51#, where essentially one
big event is expected. The latter in all cases will have
singular scaling as compared to the previous ones. It
found that the statistics ofe display a power-law distribution
considering all events up to fracture.

Let us show that this can be proved in this model. We w
here resort to the homogeneous case for simplicity. The t
number of events carrying an energy less thane0 is obtained
from inverting Eq.~25! sincee is a monotonous function o
n

N~e,e0!5N2
F

A2e0

~26!
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6168 PRE 62STÉPHANE ROUX
valid for e0,1/2 where the load per fiber reaches the thre
old @with n5nc5N(12 f 0 / f c)#. Taking the derivative of
this cumulative distribution with respect toe0 gives the dis-
tribution N8(e)

N8~e!5
F

~2e!3/2
. ~27!

The normalization is obtained from the number of su
events, i.e.,nc , so that the normalized distribution is

N8~e!5
f 0

~12 f 0!~2e!3/2
. ~28!

Thus the distribution ofe is power-law distributed with an
exponent 3/2. Such an exponent is consistent with the
~although not with the proposed fit! obtained by Guarino
et al. and shown in Fig. 1~a! of Ref. @17#.

Finally, these authors also studied the total energy
leased as a function of time, or more precisely of resca
time to failure t̃ 5(t f2t)/t f . In fact the total energy re
leased up to the failure time is finite, and can be compu
from the force-displacement history of the fiber bund
Stopping right before unstable fracture, the total energyE
5(en amounts to

Ef 15N
f 0~12 f 0!

2
~29!

while the unstable final event will release an energyEf 2
5N f0/2. Ignoring the latter, it is easy to obtain the tot
energy which has been released aftern[xN fibers have been
broken:

E~x!5~N/2!
f 0

2x

12x
. ~30!

Similarly, one can easily compute the time to failure fro
any intermediate stage, redefining the bundle sizeN85(1
2x)N, and the forcef 085 f 0 /(12x). We have

t~x!5
A2pkT~12x!

f 0
expS ~12x2 f 0!2

2kT~12x!2D . ~31!

So that the reduced time is

t̃ 5
t f2t

t f
5

t~x!

t~0!
5~12x!expS ~12x2 f 0!2

2kT~12x!2 2
~12 f 0!2

2kT D .

~32!

Note, however, that this expression is inadequate whex

becomes very close toxf , sincet̃ does not reach 0 exactly a
this point. However, we recall that this expression was
tained in the limitkT!((12 f 0) and thust̃ is very small for
x5xf . The domain of validity of this law is, however, ex
pected to hold for most of the controlled failure stage. W
will investigate numerically this statement in the following

The proportion of fibers broken at the onset of instabil
is xf512 f 0, so that the rescaled time can be expressed
-

ta

-
d

d
.

-

e

s

t̃ 5~12x!expS ~xf2x!2

2kT~12x!2 2
xf

2

2kTD . ~33!

Finally the total energy dissipated as a function of time
obtained from the elimination ofx between Eqs.~30! and
~33!.

Guarino et al. @17# proposed thatE(x) diverges as a
power law of t̃ . We have shown thatE(x) is bounded from
above and thus such a law cannot hold. We show in Fig.
plot similar to Fig. 1~b! of Ref. @17#. In this figure, we used
both the exact expression for the time, and the above
~33! to check the validity of the approximation. We do o
serve a good fit for most of the reduced time parameter.
power law reported by Guarino can indeed be fitted to
data, with a very small exponent. This power-law does
hold over an increasing range of parameters, even if the
tem size diverges, and thus the parallel with a critical-li
behavior appears to be somewhat fortituous.

Since we know thatE( t̃ ) approaches a constant fort̃
→0, we may rather study

e[
@Ef 12E~ t̃ !#

Ef 1
~34!

as a function oft̃ . Figure 4 shows the graph of this functio
for the same parameters as Fig. 3. We observe that the
proximate expression given above~shown as a bold dotted
curve! reproduces most of the behavior apart from the i
mediate vicinity of the global failure. But the latter may b
very sensitive to the detailed numerical implementation
the model.

In order to get some more insight in the analytical expr
sion of the energy dissipated, we resort to the parame
form and propose to analyze it. Focusing on the neighb
hood of global failure, we substitutexf to x in all non-
singular expressions, and we ignore logarithmic correcti
to obtain

e'A11
2kT

~12 f 0!2 ln~ t̃ !. ~35!

Again we stress that this expression is expected to hold
moderatet̃ , and not vanishingly small values. Indeed, th

FIG. 3. Log-log plot of the total energy dissipated up to~re-

duced! time t̃ . The thin line corresponds to the direct integration
the data, whereas the thick dotted line corresponds to the app
mate expression from the parametric form Eqs.~33! and ~30!. In
this examplef 050.6 andkT50.01.
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PRE 62 6169THERMALLY ACTIVATED BREAKDOWN IN THE FIBER- . . .
simpler form fits the data very accurately fort̃ .0.001. Thus,
we obtain that the total energy dissipation approaches a

stant for long times, with a very slow increase,A2 ln t̃ , in
contrast with the early suggestion of Ref.@17#. Moreover,
from the data shown in Ref.@17#, the asymptotic value pre
dicted hereEf 11Ef 2 ~since no distinction was made for th
stable and unstable failure! is very precisely obtained.

FIG. 4. Log-log plot ofe5@Ef 12E( t̃ )#/Ef 1, the reduced en-

ergy which will be dissipated fromt̃ to the global failure, as a

function of the~reduced! time t̃ . The bold continuous curve corre
sponds to the direct integration of the data, whereas the thick do
line is the approximate expression from the parametric form, E
~33! and~30! and the thin dashed curve is the simplified express
Eq. ~35!. In this examplef 050.6 andkT50.01.
lid

nt
n-

VII. CONCLUSION

We have studied the failure time distribution of therma
activated breakdown in a simple fiber bundle model as p
posed by Guarinoet al. @17# Analytical expressions have
been derived in the limit of small temperature for the me
failure time as well as its entire statistical distribution. T
quenched disorder case has been shown to display a sim
behavior as the homogeneous case, with the introductio
an effective temperature accounting for the initial disorde

Finally, we have addressed the question of fracture p
cursors in this model, and we have proven the power-
distribution of energy release events. The total energy di
pation as a function of time to failure has also been cons
ered, and an approximate law was proposed describing
very slow increase toward a finite value, in contrast to ear
suggestions of an algebraic divergence.

Application of this model to the mechanical behavior
fibrous materials is a very important issue. Albeit the d
scription used here is very schematic, delayed damaged
occur for, e.g., glass fibers under stress, and it would be
interest to see how much such an approach can contact
experiments. Ongoing work on glass wool@22# shows that
this material is a natural candidate for such a compariso
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