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Thermally activated breakdown in the fiber-bundle model
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Guarinoet al, (cond-Mat/990832Phave recently introduced a fiber bundle model where fiber fracture can
be thermally activated. Under a fixésubcritica) loading, the mean failure time of the bundlg) is studied.
An analytical expression for the latter is obtained as a function of the load. The effe¢hafraw) quenched
disorder in the fracture stress of the fibers with a Gaussian distribution is shown to lead to an effective
temperature simply translated with respect to the actual one. Finally, some “critical” properties of fracture
precursors which have been proposed are investigated within the present model.

PACS numbgs): 46.50+a, 62.20.Mk, 81.40.Np

[. INTRODUCTION statistics of the time to failure for the entire bundle. Coleman
[10,17 pioneered such extensions, and obtained key results
Damage mechanics describes the mechanical behavior &fr the Gaussian character of the failure time distribution of
heterogeneous solids in which microcracks can nucleateshort fibers(and the breakdown of such a character for long
propagate and be arrested. Paradoxically, even though hdiberg. Later, some of these results have been extended to a
erogeneity is essential for providing the basis of micro-crackoroad class of time-dependent strength by PhoddiX, 13
nucleation and arrest, the constitutive law is generally con- Motivated by an initial theoretical work by Pomedd4]
sidered as describing a homogeneous solid. This motivateend by preceding experimental resuli$,16 on the time to
studies of the effect of disorder on the mechanical behaviofailure under a constant load, Guariabal. [17] have intro-
of quasibrittle materials. However, even minimal models induced a variant of the latter class of extensions, taking into
two or three dimensions represent a formidable challenge taccount a thermally activated fracture initiation. We stress
solve analytically. Thus a lot of work has been based orthe point that there are many different ways of introducing
numerical simulations. In this case, the strength of the consuch thermally activated rupture. In particular, Phoenix and
clusion which can be reached is severely limited by systenTierney[18] derived a breakdown rule based on the inter-
size constraints and statisti¢4.,2] atomic potential between atoms as fitted by a Morse poten-
Alternatively, a lot of effort has been spent on analyticaltial. The approach of Guarino is based on a different spirit,
approaches which may provide a more solid ground. Themamely thermal fluctuation are assumed to induce an addi-
class of models which can be addressed analytically alstonal white Gaussian noise in the load carried by the fibers.
involve severe simplifications. One of these models, the “fi-Based on a numerical study of this model, they obtained
ber bundle” model, received a lot of attention because oneesults which were argued to support Pomeau’s initial sug-
can solve analytically a number of its properties. This meangestion concerning the scaling of the time to failure, suitably
field model has been introduced by Danigd$as early as in  adapted to this mean-field model. Moreover, a number of
the 1940's. In the original version of this model, parallel experimental resultf15,16,20,2]1 seem also to conform to
fibers connected to two rigid bars are loaded in tension. Althe scaling laws obtained within the model.
unbroken fibers are supposed to be subjected to an equal load It is thus important to secure these results through an ana-
(this is where the mean-field hypothesis comes into )play lytic investigation of the properties of this fiber bundle
The behavior of each fiber is supposed to be ideally elastimodel. It is the purpose of the present article where we con-
(with the same stiffness for all fiberand brittle (with a  sider strictly the model introduced in RéfL7]. Our analyti-
random distribution of failure strengthRandomness or dis- cal results support partly the results inferred from the nu-
order enters only in the definition of the breaking thresholdanerical study. In particular the temperature dependence of
and is time independent. After this step, the time evolution othe time to failure is justifiedup to unimportant logarithmic
the bundle is deterministic. Many exact properties of thiscorrection as well as the power-law distribution of energy
model have been obtained, from the mean forcedissipated in breaking events. However, some of the expres-
displacement characteristi€3] to fine details on the statis- sions proposed in Ref17] are unfounded, and an analytical
tics of avalanches[4] A large variety of extensions have solution is presented here.
been considered, such as load sharing rikesy] coupling Thus one of the principal motivations of the introduction
to an elastic block|8] plastic behaviof9] etc. of this model, i.e., a direct justification of Pomeau’s conjec-
Among them an important class of extension has beeture, [14] has to be reconsidered carefully. We will not in
focused on the statistics of time to failure, which concernthis paper discuss the foundations of the model, but rather
materials where subcritical crack growth may take place. Irstick to its original definition. The results concern the mean
this case, under a givesubcritica) loading one fiber may value (and statistical distributionof the failure time of a
stand a given load for some time, until it breaks down. Thehomogeneous bundle under a fixed load. We also consider
guestion at the heart of these studies is to understand thibe case of a heterogeneous fiber bundle and show that in-
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deed the quenched disorder Has first ordej the effect of  result obtained first by Colemaril0] The quantity P(1
modifying the effective temperature, as suggested by-y) was termed “breakdown rule” in this reference, and a
Guarinoet al.[17] Finally, we consider also the statistics of number of properties have been illustrated in specific ex-
the energy released in the fiber failure as precursors to globamples, such as exponential or a power-law funcfictth 1§
failure. for this breakdown rule. In the following, we will illustrate
our discussion with simple numerical simulations which es-
Il. HOMOGENEOUS SYSTEM sentially consist in integrating the above equation numeri-
) ] ) ) ) cally, using for the “breakdown rule” the specific “error
Let us consider first the case without any disorder in theynction” which results from the definition of the model in

fiber strength. The threshold forcefis=1. The total load on  Ref. [17].
the bundle is, and there are initiall\ fibers. The force on It is impossible to arrive at a closed-form expression for
each fiber is the failure time for a Gaussian distribution of force fluctua-
fmfot (1) tions. However, we may use the fact that the sum is domi-
o™ 7 nated by the time required for breaking the first fibers when
wheref,=F/N and 7 is a random(uncorrelateinoise with () fo is much less than the maximum loég=1 a fiber can
a Gaussian distribution sustain andii) the force fluctuations have a small amplitude
kT<1. ThenP can be considered as much smaller than 1 in
1 7? the above expression. To reach an analytical expression for
p(n)= —ex;{ - —> (2)  the failure time, we thus expand the derivative fwith
N 2kT ' . . .
2mkT respect tof , for small P, and integrate this expansion. The

of zero mean and varianéd, following precisely the model  derivative of this time with respect ty gives

and notations introduced in R¢fL7]. The cumulative distri-

bution of 7 is calledP(7) = [%p(x)dx A7) _ 1 . 9
The probability that one fiber survives after tirnis afg  foln[1-P(1—fg)] foP(1—fp)
py(t)=[1-P(1—fy)]" (3) qu (1—fo)?>>kT, we may expand the error function to ob-
The probability that the entire bundle survives after tinie @
pPr(t)=[1—P(1—fg)]"". (4) \/k—-l'exp(—%
Thus the distribution of the first failure time is an exponen- P(1=fo)= V2m(1—1fo) [1+0(kT)]. (10

tial distribution. The average failure time is

Taking into account only the dominant terms in powers of

-1 (5) kT, we obtain

()= NIn[1—P(1—fg)]"

2
Once the first fiber is broken, one faces a similar problem (1)~ 2mkT (1-1o) ) (11)
with a smaller fiber bundle, and a larger load per fiber. Thus fo 2kT
afteri — 1 broken fibers, the next failure is again an exponen-
tial distribution of average timer;) ForkT<(1—f,)?, the above approximation gives an excel-
lent approximation as shown below.
-1 Guarino et al. [17] have considered the above problem
(mi)= (N=1)In{1—P[1—Nfo/(N=1)]} ©) through numerical simulations. Different properties of the
model were investigated in order to draw a comparison with
Therefore the total failure time for the bundle is either experimental results published in Rdfs5,16,2Q or
N theoretical suggestions by Pomefl4] Concerning the fail-
_2 -1 7 ure time under a constant load, Guariebal. reported the
<Tf>_i:1 (N=i)In{1—P[1—Nfy/(N=)]}" () following two key observationg1) In(rf>ocf62 [Fig. 2(@) of

Ref.[17]] and (2) In{ 7)o 1/(kT) [Fig. 2(b) of Ref. [17]].
For largeN, we can turn this sum into a continuous integral  None of these two results is actually exact. The first result
seems to be a fortuitous coincidence. Indeed, using the pa-

(r >=N*1JN -N dx rameter range used in RéL7], the data in a lor) vs 1£3
f o (N=x)In{1—-P[1—Nfy/(N=x)]} graph shows only a limited curvature. Figure 1 proposes a
graph similar to Fig. @) of Ref.[17], and we indeed ob-
_ f ” —1 d_y ) serve that the data can be reasonnably considered as straight
B foIN[1-P(1-y)] vy~ over this range of variation, in agreement with the numerical

study of the latter reference. However, as the range of forces
It is important to note that the size of the fiber bunélle is extended, the apparent linearity breaks down. We note on
disappears in this expression. The above integral is an exattie figure that the approximation given in EG1) shown as
result which involves no approximation. In fact the abovethin lines gives an excellent agreement with the direct com-
analysis Eqs(3)—(8) is only a specific example of a general putation of the integral E(8).
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10° most rapidly varying term is provided by the exponential,
and thus the argument of the exponential drops for a change
10} in force supported by the fibers of order
10} At 13
o
K (1= fo)" 13
10°F . . .
S KT=0.009 This change occurs aften* fiber have failed where
1 A * —
10 -kT=0.012 { fo(n*/N)=Af, hence
akT=0.015
10° R — Approx NkT (14
n*o —————
L5 2 25 31/f23.5 4 45 5 (1—fo)fo
FIG. 1. Mean failure timgllog scalé plotted as a function of 1herefore, the failure timey is finally estimated as* r;, or
1/f2. The three curves correspond kd=0.009, 0.012, and 0.015 2
from top to bottom. The thin curves show the approximate expres- reo /k_Te (1—To) (15)
sion obtained in Eq(11). f fo 2kT

The second result proposed by Guarieval, [17] In agreement with the approximate expression @&d).
In(7;)oc1/(kT) differs from our result Eq(11) only through
a weak logarithmic correction. Figure 2 indeed shows that IV. FAILURE TIME DISTRIBUTION
the data conforms to such a variation for low temperatures, We have studied the mean value of the failure time dis-

?Sr;dism\;[virlznaep?pl)arlct)iifrﬁzzz l;A;/ ggglvi)e note that the integral eq'ribution. Let us now consider the statistical distribution of
' these failure times. We have seen thatwas the sum of
exponentially distributed timeg each independent, but with
Il SCALING ARGUMENT a different characteristic timéand thus average, standard
As the above argument does not provide much physicaqieviations, etc. are all affected by this _sca}ingt fixed_ _
insight in the expression of the failure time, we present 4°'C€ fo and temperature, as the system size goes to infinity,

simpler argument which reproduces the leading expressioff€ central limit theorem holds, and thus the global failure
of 7. Let us consider the failure timer,) for the first fiber. time is Gaussian distributed. The variance of the distribution

Using the above hypothesis of a low temperature or smalf /S0 simply additive, and thus its value’, for the global
fluctuating part for the force (4 f,)2>kT, we can write failure time is

o?=((—(7))?)

() 1 V27 (1—1) p((l—fo)Z)
7-1% — ~ ex . _ N2
NP(I-fo)  NykT 2kT _ 72f N dx
(12 0 (N=x)2In[1—P[1—Nfa/(N—x)]}?

This time is decreasing as the number of the broken fiber 1 foc 1
(16)

increases. The total failure of the bundle is reached after a =—| ————dz
i i - : NfoJtoIn[1—P(1—2)]?
time which can be roughly estimated @s) times the num- 0

ber of fibers necessary to reduce significantly the breakin

. T X . Yve again resort to the low temperature hypothesis, and appl
time. The initiation stage can be estimated by noting that th J P yp X PPy

& similar computation as for the previous section. We obtain

7

10 27m(1—fg) (1—14)?
2. _n* 2

oL oc~Nn* 1] NT, ex T . 17

5
104' Thus as the size of the fiber bundle increases, the width of

% 10'¢ the distribution of failure times is expected to become more

10°L narrow, scaling as 1/N. The relative width of this distribu-

+£0.63 tion, normalized by the mean failure time?/ 77> 1/n*, also

10 120,60 1 . o
1 [ 20.60 scales as KT, giving a broader distribution for low tempera-
10 *£=0.53 1 tures. Let us note that this result has been obtained by Cole-
10° ‘ - — Approx man[10,11] and generalized by Phoer{i¥2,13 under much
0 50 100 11/f<9r 200 250 300 more general assumptions.
FIG. 2. Mean failure timgllog scal¢ plotted as a function of V. DISORDERED CASE

1/KT. The forcef in the four curves correspond to 0.63, 0.60, 0.56, ) o o ]
and 0.53 as indicated in the caption. The continuous thin curves NOw we consider a statistical distribution of breaking

show the approximate formula EQ.1) and the symbols correspond force threshold!) for each fibeij, supposed to distributed as
to the numerical integration of E¢8). a Gaussian of average 1, and variaké® where following
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Guarinoet al. [17] we introduce an equivalent temperature the fitting expression is not quite relevant for the experiment.
® to measure this time-independent breaking force varianced systematic study system by system should be performed to

The probability that fibef survives after time is resolve those possibilities.
_ The above computation concerns the first fiber failure.
s(t)=[1—P(f£')—f0)]‘. (18 However, we are interested in the failure of the entire fiber

bundle, which requires the breaking of a large number of
The probability that the entire bundle does not experiencdibers, previously estimated to be of oraer [Eq. (14)]. It is
any failure after timd is tempting to extrapolate the previous scaling argument. How-
ever, as more and more fibers fails, the tail of the distribution
. of force threshold is “consumed” in the process, and thus,
s(t):[[l [1-P(fP—fo)]". (19 the “temperature” ® associated with the distribution of
a breaking threshold should decrease.
However, in the low-temperature regirk@<1, we have
seen that the failure time was dictated by the rupture of a

N

For a large number of fibefd we may expand

s(t)=exp(—t/7y) (200 small proportion of fibers*/N proportional tokT. In the
presence of disorder, this proportion may be slightly en-
with hancedwith an upper bound obtained wiif instead ofT
in the expression afi*). Nevertheless as*/N goes to zero,
o the above estimate is expected to give a proper account of
1= —Nf In[1=P(1+x=fo)]g(x)dx,  (21)  the role of an additional quenched noise.

whereg is the Gaussian distribution of zero mean and vari-

ancek®. The interesting regime is when both temperatdres VI FRACTURE PRECURSORS

and® are low, i.e.kT<(1—fg)? andk®<(1- fo)?- Then Another extremely interesting point was raised in the nu-
one may expand thesmal) probability P, and obtain merical study of Guarinet al, [17] namely, the scaling of
precursors to fracture. This point is of fundamental and prac-
T ﬁ( (1—f0)2) = 1 tical interest. It has been addressed in the past for the fiber
lr =N~/ exp — f bundle caséwithout any thermal noigethrough the study of
277\/6 K1 —=(1+x=To) avalanche statistics. This problem has been analytically re-

the results obtained by Guarire al.
In an elementary fiber failure, the elastic energy stored in
22) the nth fiber which breaks is

(T+®)x2> p( x(l—fo)) solved by Hemmer and Hansd#] Let us here recall briefly

x[l—(’)(kT)]exr( -

—— | eX
2kTO kT

Simple algebra retaining only the leading teflow tempera- F2 2
tureg in the expansion gives for (1f)?>>k0(T+0)/T e=(1/2) >=(1/2)

(N=n)
V2w (1-1o) o (1—f0)? )
T1= .
N Vk(T+e) "\2k(T+6) since the stiffness of each fiber is unity. In RgE7] the
) o . distinction is made between individual fiber failure and
The remarkable property of this expression is that it can b@yents when several fibers break simultaneously. The notion
compared to the previous result obtained for a homogeneoust simultaneity is related to the short range correlation in the
system, Eq(12), with, however, a different temperatufes  thermal noise, and thus we will ignore this and only discuss
such that events as if they consisted in a single fiber. In fact events will
consist of many fibers only in the very end of the process
Ter=T+0. (24) [whenfy/(1—n/N) is of orderf.= 1], where essentially one
) o ) big event is expected. The latter in all cases will have a
This conclusion is similar to the one proposed by Guagho singular scaling as compared to the previous ones. It was

al. [17] on the basis of their numerical simulations, namely,qnd that the statistics afdisplay a power-law distribution,
that the “quenched”(time-independentheterogeneities of considering all events up to fracture.

the medium modifies the effective temperature. Moreover it | ot s show that this can be proved in this model. We will
appears as being simply additifer low temperaturesitis  here resort to the homogeneous case for simplicity. The total

important to note that fitting the experimental fracture data, mber of events carrying an energy less thgis obtained
for various systemp20,16 revealed a good agreement with 4 inverting Eq.(25) sincee is a monotonous function of
a theoretical expectation expression for thermally activateg

failure only if a temperature much larger than the actual one
of the experiment was used. One possibility is that indeed
guenched disorder comes into play through an effective tem-
perature such as the one obtained above. However, one Me<ep)=N—
should also consider the possibility that the actual form of \/2_60

0
(1—n/N)? (25)

(23

(26)
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valid for e;<<1/2 where the load per fiber reaches the thresh-
old [with n=n.=N(1-fy/f.)]. Taking the derivative of
this cumulative distribution with respect tg gives the dis-

tribution A (¢€) E/Es
N(e)= ——:. (27
3/2 3
(26) 10 Exact —
Approx -
The normalization is obtained from the number of such 1\ S S S ,
events, i.e.n., so that the normalized distribution is 0 100 10 : 107 100 10
fo FIG. 3. Log-log plot of the total energy dissipated up(te-
N'(e) (28) duced timet. The thin line corresponds to the direct integration of

T (1-fo)(20% . . .
( 0)(2€) the data, whereas the thick dotted line corresponds to the approxi-

Thus the distribution of is power-law distributed with an Mate expression from the parametric form E€E3) and (30). In
ttgls examplef,=0.6 andkT=0.01.

exponent 3/2. Such an exponent is consistent with the da

(although not with the proposed )fibbtained by Guarino

et al. and shown in Fig. () of Ref.[17]. T=(1-x)ex _
Finally, these authors also studied the total energy re- 2kT(1—x)* 2kT/

leased as a function of time, or more precisely of rescaletld:, IV the total dissipated functi i ,
time to failuret=(r;—t)/7;. In fact the total energy re- naty e tota energy dissipated as a functon of ime 1S

leased up to the failure time is finite, and can be compute btained from the elimination ok between Eqs(30) and

from the force-displacement history of the fiber bundle. 33).

Stopping right before unstable fracture, the total endegy Guarino etNaI' [17] proposed thatE(x)' diverges as a
=3, amounts to power law oft. We have shown th&E(x) is bounded from

above and thus such a law cannot hold. We show in Fig. 3 a
fo(1—fo) plot similar to Fig. 1b) of Ref.[17]. In this figure, we used
— (29 both the exact expression for the time, and the above Eq.
(33) to check the validity of the approximation. We do ob-
serve a good fit for most of the reduced time parameter. The
power law reported by Guarino can indeed be fitted to the
data, with a very small exponent. This power-law does not
hold over an increasing range of parameters, even if the sys-

(x—x)?% X =3

Ef1: N

while the unstable final event will release an enefgy
=Nfy/2. Ignoring the latter, it is easy to obtain the total
energy which has been released afterxN fibers have been

broken: tem size diverges, and thus the parallel with a critical-like
2 behavior appears to be somewhat fortituous.
E(x)=(N/2)ﬁ. (30) Since we know thaE(t) approaches a constant for
—0, we may rather study

Similarly, one can easily compute the time to failure from [Eq—E(D)]
any intermediate stage, redefining the bundle $e=(1 " (34)
—X)N, and the forcef (=f,/(1—x). We have E

T VEPRY. as a function ott. Figure 4 shows the graph of this function

7(X)= 27kT(1~x) F{(l X f°)2>_ (31)  for the same parameters as Fig. 3. We observe that the ap-
fo 2kT(1=x) proximate expression given aboyghown as a bold dotted

curve reproduces most of the behavior apart from the im-
mediate vicinity of the global failure. But the latter may be
very sensitive to the detailed numerical implementation of
the model.
In order to get some more insight in the analytical expres-
(32 sion of the energy dissipated, we resort to the parametric
) L form and propose to analyze it. Focusing on the neighbor-
Note, however, that this expression is inadequate when .4 of global failure, we substitute; to x in all non-

becomes very close tq, sincet does not reach 0 exactly at singular expressions, and we ignore logarithmic corrections
this point. However, we recall that this expression was ob+tg obtain
tained in the limitk T<((1— f,) and thust is very small for
x=x;. The domain of validity of this law is, however, ex- o \/1 N 2kT () (35
pected to hold for most of the controlled failure stage. We (1—fq)? '
will investigate numerically this statement in the following.

The proportion of fibers broken at the onset of instability Again we stress that this expression is expected to hold for
is x;=1—f,, so that the rescaled time can be expressed asnoderatet, and not vanishingly small values. Indeed, this

So that the reduced time is

=1t

o n0) TSR T T 02 T T kT

it 7(X) (1—X—f0)2_(1_fo)2)
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VIl. CONCLUSION

g:z i We have studied the failure time distribution of thermally
07 | activated breakdown in a simple fiber bundle model as pro-
0.6 | posed by Guarineet al. [17] Analytical expressions have

e 05 / been derived in the limit of small temperature for the mean
04 | 4_/ failure time as well as its entire statistical distribution. The
03 — Exact quenched disorder case has been shown to display a similar
0.2 ¢ ;/ Eg”g;;m behavior as the homogeneous case, with the introduction of
0.1 ¢ ;’ an effective temperature accounting for the initial disorder.

00 100 100 100 10t 1o Finally, we have addressed the question of fracture pre-

i

FIG. 4. Log-log plot ofe=[E;—E(t)]/Es;, the reduced en-
ergy which will be dissipated from to the global failure, as a
function of the(reduced timet. The bold continuous curve corre-

cursors in this model, and we have proven the power-law
distribution of energy release events. The total energy dissi-
pation as a function of time to failure has also been consid-
ered, and an approximate law was proposed describing the
very slow increase toward a finite value, in contrast to earlier

sponds to the direct integration of the data, whereas the thick dotteguggestions of an algebraic divergence.

line is the approximate expression from the parametric form, Eqs. Application of this model to the mechanical behavior of
(33) and(30) and the thin dashed curve is the simplified expressionfihrous materials is a very important issue. Albeit the de-

Eq. (35). In this examplef,=0.6 andk T=0.01.

simpler form fits the data very accurately for 0.001. Thus,

scription used here is very schematic, delayed damaged may
occur for, e.g., glass fibers under stress, and it would be of
interest to see how much such an approach can contact with

we obtain that the total energy dissipation approaches a coffXPeriments. Ongoing work on glass wdab] shows that

stant for long times, with a very slow increasé,— Int, in
contrast with the early suggestion of R¢L7]. Moreover,
from the data shown in Ref17], the asymptotic value pre-
dicted hereE;;+ E;, (since no distinction was made for the
stable and unstable failurés very precisely obtained.

this material is a natural candidate for such a comparison.
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